Mit künstlicher Intelligenz Abfallrecycling verbessern
Mit Bilderkennung und Maschinendatenanalysen kann die Abfallaufbereitung optimiert werden
Digitalisierung und Methoden der künstlichen Intelligenz (KI) können einen großen Beitrag leisten, um die Abfallverwertung zu verbessern. Im Forschungsprojekt KI-Waste soll der Recyclinganteil durch innovative Ansätze um mindestens 10 % erhöht werden. Bilderkennung und Maschinendatenanalyse werden kombiniert, um die Abfallaufbereitung zu optimieren.
Die Müll- bzw. Plastikberge wachsen weltweit kontinuierlich an. Dabei handelt es sich vor allem um gemischte Abfälle, die hauptsächlich aus Kunst- und Verbundstoffen sowie organischen Anteilen wie Papier und Kartonagen bestehen. Für die Abfallaufbereitung ist die unterschiedliche Zusammensetzung herausfordernd, weil sich diese saisonal und regional stark unterscheidet. Bestehende Anlagen haben keine flächendeckend genutzte bzw. geeignete Technologie, um die Qualität der Zwischenschritte innerhalb einer Anlage automatisch zu erkennen. Dadurch kann es zum Beispiel geschehen, dass der Anteil an Kunststoffflaschen gut getrennt wird, während die restlichen Abfallbestandteile wie Kartonagen nur unzureichend abgeschieden werden.
Technologischer Meilenstein
Das Projekt KI-Waste kombiniert nun erstmals Bilddaten mit Anlagendaten, um die Art und Zusammensetzung des Abfalls im laufenden Prozess zu beschreiben. Das Projekt unter Leitung des Know-Centers, wird in Zusammenarbeit mit dem Institut für Maschinelles Sehen und Darstellen der Technischen Universität Graz und der JOANNEUM Research Forschungsgesellschaft umgesetzt.
„Die Digitalisierung bietet gerade in unserem Tätigkeitsbereich noch ungenutztes Potential. Ständige Innovation ist das einzig wirksame Mittel, um langfristig als Unternehmen erfolgreich zu sein", betont Christian Oberwinkler, CTO der Komptech GmbH, die das Projekt als Technologiepartner im Bereich Behandlung gemischter Abfälle unterstützt.
Abfall erkennen und unterscheiden
Damit Abfall für die nachfolgende Zerkleinerung korrekt beschrieben wird, muss der Materialstrom in einzelne Objekte unterteilt werden. Gleichzeitig sind Informationen über Klassenzugehörigkeit und Geometrie der Objekte nötig, um sie eindeutig einzuordnen. Objekte gleicher Klasse wie zum Beispiel Holzpellets und Äste haben unterschiedliche Geometrien. Objekte ähnlicher Geometrie wie PET-Flaschen und Glasflaschen sind wiederum unterschiedlichen Klassen zuzuordnen. Wird im Idealfall jedes Objekt erkannt, kann die Materialverteilung auf einer aufgenommenen Fläche festgelegt und die Recyclingmaschine entsprechend angepasst werden.
3D Sensorik, wie Stereokameras, Time-of-flight (TOF) Kameras, wird verwendet, um die räumlichen Eigenschaften der Objekte zu erfassen. 2D Sensoren beschreiben die Farbinformationen mit sehr hohen Auflösungen. Die Bildanalyse-Software wendet Deep Learning Algorithmen an, welche anhand von Trainingsdaten lernen, den Abfall zu erkennen und zu unterscheiden. Um die Zusammenhänge des Anlagenbetriebes besser zu verstehen, untersucht das Forscherteam Einflussfaktoren und Korrelationen in den Messdaten. Daraus werden Modelle abgeleitet, um die Anlage zu optimieren.
Gewinn für Unternehmen und Umwelt
Das Ergebnis von KI-Waste wird eine Handlungsempfehlung sein, wie KI in der Prozessoptimierung für die Abfall- und Kreislaufwirtschaft eingesetzt werden kann. Abfallwirtschafts-Unternehmen profitieren dadurch von einer Effizienzsteigerung, einer erhöhten Recyclingrate und einem verringerten Energieverbrauch, was sich in weiterer Folge positiv auf die Umwelt auswirkt. Das Projekt trägt gesamt dazu bei, Bilderkennung im Hinblick auf die Messgenauigkeit und Position zu optimieren.
Die Ergebnisse werden auch Vorarbeiten für andere Industriebereiche liefern, wie zum Beispiel die Pharma- oder Stahlindustrie, in denen ebenfalls Bilddaten gemeinsam mit Zeitreihendaten analysiert werden müssen.
Kontakt: ABA - Invest in Austria, Maria Hirzinger | mh@core-communications.at | www.investinaustria.at
Technik | Innovation, 18.02.2021
Der Zauber des Wandels
forum 04/2024 ist erschienen
- Windkraft
- Zirkuläre Produkte
- Tax the Rich
- Green Events
- Petra Kelly
Kaufen...
Abonnieren...
26
NOV
2024
NOV
2024
Ein leuchtendes Zeichen für Demokratie und Gemeinschaft
Tollwood Winterfestival unter dem Motto "Wir braucht Dich!"
80336 München
Tollwood Winterfestival unter dem Motto "Wir braucht Dich!"
80336 München
28
NOV
2024
NOV
2024
17. Deutscher Nachhaltigkeitstag
Transformation im Gegenwind - Verleihung des Deutschen Nachhaltigkeitspreises
40474 Düsseldorf
Transformation im Gegenwind - Verleihung des Deutschen Nachhaltigkeitspreises
40474 Düsseldorf
10
DEZ
2024
DEZ
2024
Professionelle Klimabilanz, einfach selbst gemacht
Einfache Klimabilanzierung und glaubhafte Nachhaltigkeitskommunikation gemäß GHG-Protocol
Politik
"Wer die Demokratie retten will, muss den Willen zur Macht eindämmen."Christoph Quarch analysiert die Wahlergebnisse in Sachsen und Thüringen aus philosophischer Perspektive
Jetzt auf forum:
Eindämmung der Barbarei durch Kultur
Einerseits... und andererseits
Der Gender Pay Gap in Pizzaform:
"Real Estate Social Impact Investing Award 2024"
When less equals more: the incredible potential of efficiency
Simulation beschleunigt Nachhaltigkeit in der Produktentwicklung